Quasi-steady state model determination for systems with singular perturbations modelled by bond graphs
Gilberto Gonzalez Avalos and
Noe Barrera Gallegos
Mathematical and Computer Modelling of Dynamical Systems, 2013, vol. 19, issue 5, 483-503
Abstract:
A bond graph model for a singularly perturbed system is presented. This system is characterized by fast and slow dynamics. In addition, the bond graph can have storage elements with derivative and integral causality assignments for both dynamics. When the singular perturbation method is applied, the fast dynamic differential equation degenerates to an algebraic equation; the real roots of this equation can be determined by using another bond graph called singularly perturbed bond graph (SPBG). This SPBG has the characteristic that storage elements of the fast state and slow state have a derivative and integral causality assignment, respectively. Thus, a quasi-steady state model by using SPBG is obtained. A Lemma to get the junction structure from SPBG is proposed. Finally, the proposed methodology is applied to two examples.
Date: 2013
References: View complete reference list from CitEc
Citations: View citations in EconPapers (1)
Downloads: (external link)
http://hdl.handle.net/10.1080/13873954.2013.766214 (text/html)
Access to full text is restricted to subscribers.
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:taf:nmcmxx:v:19:y:2013:i:5:p:483-503
Ordering information: This journal article can be ordered from
http://www.tandfonline.com/pricing/journal/NMCM20
DOI: 10.1080/13873954.2013.766214
Access Statistics for this article
Mathematical and Computer Modelling of Dynamical Systems is currently edited by I. Troch
More articles in Mathematical and Computer Modelling of Dynamical Systems from Taylor & Francis Journals
Bibliographic data for series maintained by Chris Longhurst ().