EconPapers    
Economics at your fingertips  
 

Incremental optimal process excitation for online system identification based on evolving local model networks

Christoph Hametner, Markus Stadlbauer, Maxime Deregnaucourt and Stefan Jakubek

Mathematical and Computer Modelling of Dynamical Systems, 2013, vol. 19, issue 6, 505-525

Abstract: In this paper, a methodology for the generation of optimal input signals for incremental data-based modelling of nonlinear static and dynamic systems is presented. For this purpose, an online strategy consisting of an evolving model and an iterative finite horizon input optimization in parallel to the ongoing experiment is pursued. Such an integrated methodology is methodically very efficient since the experiment is only conducted until the desired model quality is obtained. For the process excitation, the compliance with system input and output limits is of great importance. Especially for nonlinear dynamic systems, the compliance with output constraints is challenging since the current input has an impact on all forthcoming outputs. The generation of optimal inputs is based on the iterative optimization of the Fisher information matrix of the current process model subject to input and output constraints. For the identification, an evolving local model network is used that can cope with a growing amount of data. To this end, the parameter adaptation and the automated structure evolution are characteristic of the evolving local model network. The effectiveness of the proposed method is demonstrated on two typical automotive application examples. First, a stationary smoke model of a diesel engine and second, a dynamic exhaust temperature model are identified by use of optimal process excitation.

Date: 2013
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (1)

Downloads: (external link)
http://hdl.handle.net/10.1080/13873954.2013.800122 (text/html)
Access to full text is restricted to subscribers.

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:taf:nmcmxx:v:19:y:2013:i:6:p:505-525

Ordering information: This journal article can be ordered from
http://www.tandfonline.com/pricing/journal/NMCM20

DOI: 10.1080/13873954.2013.800122

Access Statistics for this article

Mathematical and Computer Modelling of Dynamical Systems is currently edited by I. Troch

More articles in Mathematical and Computer Modelling of Dynamical Systems from Taylor & Francis Journals
Bibliographic data for series maintained by Chris Longhurst ().

 
Page updated 2025-03-20
Handle: RePEc:taf:nmcmxx:v:19:y:2013:i:6:p:505-525