EconPapers    
Economics at your fingertips  
 

STABLE – a stability algorithm for parametric model reduction by matrix interpolation

M. Geuss and B. Lohmann

Mathematical and Computer Modelling of Dynamical Systems, 2016, vol. 22, issue 4, 307-322

Abstract: In this article, an algorithm guaranteeing asymptotic stability for parametric model order reduction by matrix interpolation is proposed for the general class of high-dimensional linear time-invariant systems. In the first step, the system matrices of the high-dimensional parameter-dependent system are computed for a set of parameter vectors. The local high-order systems are reduced by a projection-based reduction method and stabilized, if necessary. Secondly, the low-order systems are transformed into a consistent set of generalized coordinates. Thirdly, a new procedure using semidefinite programming is applied to the low-order systems, converting them into strictly dissipative form. Finally, an asymptotically stable reduced order model can be calculated for any new parameter vector of interest by interpolating the system matrices of the local low-order models. We show that this approach works without any limiting conditions concerning the structure of the large-scale model and is suitable for real-time applications. The method is illustrated by two numerical examples.

Date: 2016
References: View complete reference list from CitEc
Citations:

Downloads: (external link)
http://hdl.handle.net/10.1080/13873954.2016.1198383 (text/html)
Access to full text is restricted to subscribers.

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:taf:nmcmxx:v:22:y:2016:i:4:p:307-322

Ordering information: This journal article can be ordered from
http://www.tandfonline.com/pricing/journal/NMCM20

DOI: 10.1080/13873954.2016.1198383

Access Statistics for this article

Mathematical and Computer Modelling of Dynamical Systems is currently edited by I. Troch

More articles in Mathematical and Computer Modelling of Dynamical Systems from Taylor & Francis Journals
Bibliographic data for series maintained by Chris Longhurst ().

 
Page updated 2025-03-20
Handle: RePEc:taf:nmcmxx:v:22:y:2016:i:4:p:307-322