A POD–EIM reduced two-scale model for precipitation in porous media
M. Redeker and
B. Haasdonk
Mathematical and Computer Modelling of Dynamical Systems, 2016, vol. 22, issue 4, 323-344
Abstract:
A time-dependent two-scale multiphase model for precipitation in porous media is considered, which has recently been proposed and investigated numerically. For numerical treatment, the microscale model needs to be finely resolved due to moving discontinuities modelled by several phase-field functions. This results in high computational demands due to the need of resolving many such highly resolved cell problems in course of the two-scale simulation. In this article, we present a model order reduction technique for this model, which combines different ingredients such as proper orthogonal decomposition for construction of the approximating spaces, the empirical interpolation method for parameter dependency and multiple basis sets for treating the high solution variability. The resulting reduced model experimentally demonstrates considerable acceleration and good accuracy both in reproduction as well as generalization experiments.
Date: 2016
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (1)
Downloads: (external link)
http://hdl.handle.net/10.1080/13873954.2016.1198384 (text/html)
Access to full text is restricted to subscribers.
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:taf:nmcmxx:v:22:y:2016:i:4:p:323-344
Ordering information: This journal article can be ordered from
http://www.tandfonline.com/pricing/journal/NMCM20
DOI: 10.1080/13873954.2016.1198384
Access Statistics for this article
Mathematical and Computer Modelling of Dynamical Systems is currently edited by I. Troch
More articles in Mathematical and Computer Modelling of Dynamical Systems from Taylor & Francis Journals
Bibliographic data for series maintained by Chris Longhurst ().