Comparison of a microscopic and a macroscopic age-dependent SIR model
M. Bicher,
N. Popper and
G. Schneckenreither
Mathematical and Computer Modelling of Dynamical Systems, 2017, vol. 23, issue 2, 177-195
Abstract:
In this work, we compare two structurally different modelling approaches for the simulation of an age-dependent SIR (susceptible, infected, recovered)-type epidemic spread: a microscopic agent-based model and a macroscopic integro-partial differential equation model. Doing so, we put a newly derived mean-field theorem for mixed state-spaces (continuous and discrete) to the test, analytically proving the asymptotic equivalence of the results of both simulations on the aggregate level. Afterwards, both models are executed and compared for abstract scenarios to affirm the derived equivalence. As both models are hereby proven to deliver (asymptotically) the same results, they can be used to supplement each other in terms of structural knowledge of the model, identification and determination of parameters and their values, as well as finally verification and validation.
Date: 2017
References: View complete reference list from CitEc
Citations:
Downloads: (external link)
http://hdl.handle.net/10.1080/13873954.2016.1232279 (text/html)
Access to full text is restricted to subscribers.
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:taf:nmcmxx:v:23:y:2017:i:2:p:177-195
Ordering information: This journal article can be ordered from
http://www.tandfonline.com/pricing/journal/NMCM20
DOI: 10.1080/13873954.2016.1232279
Access Statistics for this article
Mathematical and Computer Modelling of Dynamical Systems is currently edited by I. Troch
More articles in Mathematical and Computer Modelling of Dynamical Systems from Taylor & Francis Journals
Bibliographic data for series maintained by Chris Longhurst ().