Modelling and simulation of self-regulating pneumatic valves
Alexander Pollok and
Francesco Casella
Mathematical and Computer Modelling of Dynamical Systems, 2017, vol. 23, issue 3, 243-261
Abstract:
In conventional aircraft energy systems, self-regulating pneumatic valves (SRPVs) are used to control the pressure and mass flow of the bleed air. The dynamic behaviour of these valves is complex and dependent on several physical phenomena. In some cases, limit cycles can occur, deteriorating performance. This article presents a complex multi-physical model of SRPVs implemented in Modelica. First, the working principle is explained, and common challenges in control-system design-problems related to these valves are illustrated. Then, a Modelica-model is presented in detail, taking into account several physical domains. It is shown, how limit cycle oscillations occurring in aircraft energy systems can be reproduced with this model. The sensitivity of the model regarding both solver options and physical parameters is investigated.
Date: 2017
References: View complete reference list from CitEc
Citations:
Downloads: (external link)
http://hdl.handle.net/10.1080/13873954.2017.1298623 (text/html)
Access to full text is restricted to subscribers.
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:taf:nmcmxx:v:23:y:2017:i:3:p:243-261
Ordering information: This journal article can be ordered from
http://www.tandfonline.com/pricing/journal/NMCM20
DOI: 10.1080/13873954.2017.1298623
Access Statistics for this article
Mathematical and Computer Modelling of Dynamical Systems is currently edited by I. Troch
More articles in Mathematical and Computer Modelling of Dynamical Systems from Taylor & Francis Journals
Bibliographic data for series maintained by Chris Longhurst ().