EconPapers    
Economics at your fingertips  
 

Automated safety analysis by minimal path set detection for multi-domain object-oriented models

Christian Schallert

Mathematical and Computer Modelling of Dynamical Systems, 2017, vol. 23, issue 3, 341-360

Abstract: A method called DMP for Detection of the Minimal Path set of any fault-tolerant technical system, the system being represented as a multi-domain object-oriented model, is described, exemplified and substantiated in this article. Thus, by use of DMP, a safety analysis of the system is automatically performed. DMP employs simulation of normal behaviour, degradation and failure of a system. In essence, it is a state space simulation. The state space, in this context, denotes the set of combinations of intact and failed components of a system to be examined for detection of its minimal path set. Without any reduction technique, the size of a system’s state space grows exponentially with the number of its components. In order to render the DMP method feasible, the object structure of the system model is represented as a graph. Evaluation of the graph reduces the size of the state space and hence the number of simulations required.

Date: 2017
References: Add references at CitEc
Citations:

Downloads: (external link)
http://hdl.handle.net/10.1080/13873954.2017.1298624 (text/html)
Access to full text is restricted to subscribers.

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:taf:nmcmxx:v:23:y:2017:i:3:p:341-360

Ordering information: This journal article can be ordered from
http://www.tandfonline.com/pricing/journal/NMCM20

DOI: 10.1080/13873954.2017.1298624

Access Statistics for this article

Mathematical and Computer Modelling of Dynamical Systems is currently edited by I. Troch

More articles in Mathematical and Computer Modelling of Dynamical Systems from Taylor & Francis Journals
Bibliographic data for series maintained by Chris Longhurst ().

 
Page updated 2025-03-20
Handle: RePEc:taf:nmcmxx:v:23:y:2017:i:3:p:341-360