EconPapers    
Economics at your fingertips  
 

Effect of gravity on subject-specific human lung deformation

Behnaz Seyfi Noferest, Anand P. Santhanam and Olusegun J. Ilegbusi

Mathematical and Computer Modelling of Dynamical Systems, 2018, vol. 24, issue 1, 87-101

Abstract: A biomechanical model of human lung is developed and used to investigate the effect of gravity on lung deformation. The lung is assumed to behave as a poro-elastic medium with spatially dependent elastic property. Finite element analysis is performed on a three-dimensional (3D) lung geometry reconstructed from a four-dimensional Computed Tomography (4DCT) scan dataset of human patient. The spatially dependent Young’s modulus (YM) values are estimated using inverse analysis from a linear elastic deformation model. The predicted deformation of selected landmarks is monitored with and without gravity, and compared with data obtained from 4DCT registration. The results show that gravity indeed significantly affects the magnitude and distribution of lung deformation with the maximum displacement enhanced by 54% in the direction of gravity, for the conditions investigated. In summary, the accuracy of predicted deformation is improved through incorporation of gravity in the biomechanical model of lung.

Date: 2018
References: View complete reference list from CitEc
Citations:

Downloads: (external link)
http://hdl.handle.net/10.1080/13873954.2017.1382537 (text/html)
Access to full text is restricted to subscribers.

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:taf:nmcmxx:v:24:y:2018:i:1:p:87-101

Ordering information: This journal article can be ordered from
http://www.tandfonline.com/pricing/journal/NMCM20

DOI: 10.1080/13873954.2017.1382537

Access Statistics for this article

Mathematical and Computer Modelling of Dynamical Systems is currently edited by I. Troch

More articles in Mathematical and Computer Modelling of Dynamical Systems from Taylor & Francis Journals
Bibliographic data for series maintained by Chris Longhurst ().

 
Page updated 2025-03-20
Handle: RePEc:taf:nmcmxx:v:24:y:2018:i:1:p:87-101