EconPapers    
Economics at your fingertips  
 

Platform modelling and scheduling game with multiple intelligent cloud-computing pools for big data

Wanyang Dai

Mathematical and Computer Modelling of Dynamical Systems, 2018, vol. 24, issue 5, 526-572

Abstract: We develop a generic game platform that can be used to model various real-world systems with multiple intelligent cloud-computing pools and parallel-queues for resources-competing users. Inside the platform, the software structure is modelled as Blockchain. All the users are associated with Big Data arrival streams whose random dynamics is modelled by triply stochastic renewal reward processes (TSRRPs). Each user may be served simultaneously by multiple pools while each pool with parallel-servers may also serve multi-users at the same time via smart policies in the Blockchain, e.g. a Nash equilibrium point myopically at each fixed time to a game-theoretic scheduling problem. To illustrate the effectiveness of our game platform, we model the performance measures of its internal data flow dynamics (queue length and workload processes) as reflecting diffusion with regime-switchings (RDRSs) under our scheduling policies. By RDRS models, we can prove our myopic game-theoretic policy to be an asymptotic Pareto minimal-dual-cost Nash equilibrium one globally over the whole time horizon to a randomly evolving dynamic game problem. Iterative schemes for simulating our multi-dimensional RDRS models are also developed with the support of numerical comparisons.

Date: 2018
References: Add references at CitEc
Citations: View citations in EconPapers (1)

Downloads: (external link)
http://hdl.handle.net/10.1080/13873954.2018.1516677 (text/html)
Access to full text is restricted to subscribers.

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:taf:nmcmxx:v:24:y:2018:i:5:p:526-572

Ordering information: This journal article can be ordered from
http://www.tandfonline.com/pricing/journal/NMCM20

DOI: 10.1080/13873954.2018.1516677

Access Statistics for this article

Mathematical and Computer Modelling of Dynamical Systems is currently edited by I. Troch

More articles in Mathematical and Computer Modelling of Dynamical Systems from Taylor & Francis Journals
Bibliographic data for series maintained by Chris Longhurst ().

 
Page updated 2025-03-20
Handle: RePEc:taf:nmcmxx:v:24:y:2018:i:5:p:526-572