EconPapers    
Economics at your fingertips  
 

Mathematical modeling and validation of mass transfer phenomenon in homogeneous charge compression ignition engines based on a thermodynamic multi zone model

Elaheh Neshat and Rahim Khoshbakhti Saray

Mathematical and Computer Modelling of Dynamical Systems, 2019, vol. 25, issue 2, 167-194

Abstract: The main purpose of the current study is mathematical modelling and validation of mass transfer phenomenon in homogeneous charge compression ignition engines. A validated multi-zone model coupled to a semi-detailed chemical kinetics is used to predict homogeneous charge compression ignition combustion and emissions. Heat and Mass transfer submodels are linked to the multi-zone model. Bulk flow and diffusion mass transfer between zones are considered. The results indicate that the diffusion mass transfer is negligible in homogeneous charge compression ignition engines. Bulk flow mass transfer plays a critical role in homogeneous charge compression ignition simulation and applying it in the multi-zone model leads to accurate prediction of the start of combustion, peak pressure and exhaust emissions. The results show that the maximum error changes from 90% to 5% in carbon monoxide prediction and from 98% to 14% in unburned hydrocarbons prediction, using the mass transfer submodel.

Date: 2019
References: Add references at CitEc
Citations: View citations in EconPapers (1)

Downloads: (external link)
http://hdl.handle.net/10.1080/13873954.2019.1596957 (text/html)
Access to full text is restricted to subscribers.

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:taf:nmcmxx:v:25:y:2019:i:2:p:167-194

Ordering information: This journal article can be ordered from
http://www.tandfonline.com/pricing/journal/NMCM20

DOI: 10.1080/13873954.2019.1596957

Access Statistics for this article

Mathematical and Computer Modelling of Dynamical Systems is currently edited by I. Troch

More articles in Mathematical and Computer Modelling of Dynamical Systems from Taylor & Francis Journals
Bibliographic data for series maintained by Chris Longhurst ().

 
Page updated 2025-03-20
Handle: RePEc:taf:nmcmxx:v:25:y:2019:i:2:p:167-194