EconPapers    
Economics at your fingertips  
 

Nonlinear modeling and performance analysis of a closed-loop supply chain in the presence of stochastic noise

Sajjad Aslani Khiavi, Hamid Khaloozadeh and Fahimeh Soltanian

Mathematical and Computer Modelling of Dynamical Systems, 2019, vol. 25, issue 5, 499-521

Abstract: We study four-echelon supply chains consisting of manufacturer, wholesaler, retailer and customer with recovery center as hybrid recycling channels. In order to gain a larger market share, the retailer often takes the sales as a decision-making variable. For this purpose, in this supply chain, the retailer limits the forecast of market demand in future periods with expected logic. It also manages demand by leveraging prices and choosing market. In this paper, first, we investigate the state-space model of this supply chain system and examine the effect of complex dynamic and stochastic noise on the bullwhip effect. We analytically prove that this factor leads to the bullwhip effect. So, first, we filtered the information between nodes with extended Kalman filter after which we regulated the destructive effects of the bullwhip phenomenon by designing a non-linear quadratic Gaussian optimal controller. Eventually, the simulation results indicate the efficiency of the proposed method.

Date: 2019
References: Add references at CitEc
Citations: View citations in EconPapers (4)

Downloads: (external link)
http://hdl.handle.net/10.1080/13873954.2019.1663876 (text/html)
Access to full text is restricted to subscribers.

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:taf:nmcmxx:v:25:y:2019:i:5:p:499-521

Ordering information: This journal article can be ordered from
http://www.tandfonline.com/pricing/journal/NMCM20

DOI: 10.1080/13873954.2019.1663876

Access Statistics for this article

Mathematical and Computer Modelling of Dynamical Systems is currently edited by I. Troch

More articles in Mathematical and Computer Modelling of Dynamical Systems from Taylor & Francis Journals
Bibliographic data for series maintained by Chris Longhurst ().

 
Page updated 2025-03-20
Handle: RePEc:taf:nmcmxx:v:25:y:2019:i:5:p:499-521