EconPapers    
Economics at your fingertips  
 

Multiphysics finite element model for the computation of the electro-mechanical dynamics of a hybrid reluctance actuator

F. Cigarini, E. Csencsics, J. Schlarp, S. Ito and G. Schitter

Mathematical and Computer Modelling of Dynamical Systems, 2020, vol. 26, issue 4, 322-343

Abstract: In hybrid reluctance actuators, the achievable closed-loop system bandwidth is affected by the eddy currents and hysteresis in the ferromagnetic components and the mechanical resonance modes. Such effects must be accurately predicted to achieve high performance via feedback control. Therefore, a multiphysics electro-mechanical finite element model is proposed in this paper to compute the dynamics of a 2-DoF hybrid reluctance actuator. An electromagnetic simulation is adopted to compute the electromagnetic dynamics and the actuation torque, which is employed as input for a structural dynamic simulation computing the electro-mechanical frequency response function. For model validation, the simulated and measured frequency response plots are compared for two actuators with solid and laminated outer yoke, respectively. In both cases, the model accurately predicts the measurement results, with a maximum relative phase error of 1.7% between the first resonance frequency and 1 kHz and a relative error of 1.5% for the second resonance frequency..

Date: 2020
References: Add references at CitEc
Citations:

Downloads: (external link)
http://hdl.handle.net/10.1080/13873954.2020.1766509 (text/html)
Access to full text is restricted to subscribers.

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:taf:nmcmxx:v:26:y:2020:i:4:p:322-343

Ordering information: This journal article can be ordered from
http://www.tandfonline.com/pricing/journal/NMCM20

DOI: 10.1080/13873954.2020.1766509

Access Statistics for this article

Mathematical and Computer Modelling of Dynamical Systems is currently edited by I. Troch

More articles in Mathematical and Computer Modelling of Dynamical Systems from Taylor & Francis Journals
Bibliographic data for series maintained by Chris Longhurst ().

 
Page updated 2025-03-20
Handle: RePEc:taf:nmcmxx:v:26:y:2020:i:4:p:322-343