EconPapers    
Economics at your fingertips  
 

Cattaneo–Christov heat flux model for three-dimensional flow of a viscoelastic fluid on an exponentially stretching surface

Sehrish Malik, M. Bilal Ashraf and Adnan Jahangir

Mathematical and Computer Modelling of Dynamical Systems, 2020, vol. 26, issue 4, 344-356

Abstract: In this article, we explore the three-dimensional boundary-layer flow over an exponentially stretching surface in two parallel ways. Constitutive equations of a second-grade fluid are used. Instead of classical Fourier’s law, Cattaneo–Christov heat flux model is employed for the formulation of the energy equation. This model can predict the effects of thermal relaxation time on the boundary layer. The resulting partial differential equations are reduced into ordinary differential equations by similarity transformations. Homotopy Analysis Method (HAM) is employed to solve the non-linear problem. Physical impact of emerging parameters on the momentum and thermal boundary-layer thickness are studied.

Date: 2020
References: Add references at CitEc
Citations: View citations in EconPapers (1)

Downloads: (external link)
http://hdl.handle.net/10.1080/13873954.2020.1777566 (text/html)
Access to full text is restricted to subscribers.

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:taf:nmcmxx:v:26:y:2020:i:4:p:344-356

Ordering information: This journal article can be ordered from
http://www.tandfonline.com/pricing/journal/NMCM20

DOI: 10.1080/13873954.2020.1777566

Access Statistics for this article

Mathematical and Computer Modelling of Dynamical Systems is currently edited by I. Troch

More articles in Mathematical and Computer Modelling of Dynamical Systems from Taylor & Francis Journals
Bibliographic data for series maintained by Chris Longhurst ().

 
Page updated 2025-03-20
Handle: RePEc:taf:nmcmxx:v:26:y:2020:i:4:p:344-356