EconPapers    
Economics at your fingertips  
 

Modelling and dynamic behaviour analysis of the software rejuvenation system with periodic impulse

Huixia Huo, Houbao Xu and Zhuoqian Chen

Mathematical and Computer Modelling of Dynamical Systems, 2021, vol. 27, issue 1, 522-542

Abstract: Software rejuvenation is a policy to counter the phenomenon of software ageing. However, how to implement software rejuvenation is still an important issue. In this paper, periodic impulse control is proposed as an effective tool to perform software rejuvenation and improve the availability of software system. First, we formulate the software rejuvenation system with periodic impulse by a group of coupled differential equations with impulsive action. Then the well-posedness of the system is demonstrated by using operator semigroup theory. At the end of the paper, numerical examples are shown to illustrate the dynamic behaviour of the system and the relationship between the system instantaneous availability and the impulsive indexes, including impulse interval and impulse strength, which yields that the system availability can be improved by adjusting the impulsive indexes.

Date: 2021
References: Add references at CitEc
Citations: View citations in EconPapers (2)

Downloads: (external link)
http://hdl.handle.net/10.1080/13873954.2021.1986074 (text/html)
Access to full text is restricted to subscribers.

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:taf:nmcmxx:v:27:y:2021:i:1:p:522-542

Ordering information: This journal article can be ordered from
http://www.tandfonline.com/pricing/journal/NMCM20

DOI: 10.1080/13873954.2021.1986074

Access Statistics for this article

Mathematical and Computer Modelling of Dynamical Systems is currently edited by I. Troch

More articles in Mathematical and Computer Modelling of Dynamical Systems from Taylor & Francis Journals
Bibliographic data for series maintained by Chris Longhurst ().

 
Page updated 2025-03-20
Handle: RePEc:taf:nmcmxx:v:27:y:2021:i:1:p:522-542