Physically motivated structuring and optimization of neural networks for multi-physics modelling of solid oxide fuel cells
Andreas Rauh,
Julia Kersten,
Wiebke Frenkel,
Niklas Kruse and
Tom Schmidt
Mathematical and Computer Modelling of Dynamical Systems, 2021, vol. 27, issue 1, 586-614
Abstract:
Neural network models for complex dynamical systems typically do not explicitly account for structural engineering insight and mutual interrelations of various subprocesses that are related to the multi-physics nature of such systems. For that reason, they are commonly interpreted as a kind of data-driven, black box modelling option that is in opposition to a physically inspired equation-based system representation for which suitable parameters are subsequently identified in a grey box sense. To bridge the gap between data-driven and equation-based modelling paradigms, this paper proposes a novel approach for a physics-inspired structuring of neural networks. The derivation of this kind of structuring, an optimal choice of network inputs and numbers of neurons in a hidden layer as well as the achievable modelling accuracy are demonstrated for the thermal and electrochemical behaviour of high-temperature fuel cells. Finally, different network structures are compared against experimental data.
Date: 2021
References: Add references at CitEc
Citations: View citations in EconPapers (1)
Downloads: (external link)
http://hdl.handle.net/10.1080/13873954.2021.1990966 (text/html)
Access to full text is restricted to subscribers.
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:taf:nmcmxx:v:27:y:2021:i:1:p:586-614
Ordering information: This journal article can be ordered from
http://www.tandfonline.com/pricing/journal/NMCM20
DOI: 10.1080/13873954.2021.1990966
Access Statistics for this article
Mathematical and Computer Modelling of Dynamical Systems is currently edited by I. Troch
More articles in Mathematical and Computer Modelling of Dynamical Systems from Taylor & Francis Journals
Bibliographic data for series maintained by Chris Longhurst ().