EconPapers    
Economics at your fingertips  
 

Certain families of differential equations associated with the generalized 1-parameter Hermite–Frobenius Euler polynomials

Mohra Zayed, Shahid Ahmad Wani, Mir Subzar and Mumtaz Riyasat

Mathematical and Computer Modelling of Dynamical Systems, 2024, vol. 30, issue 1, 683-700

Abstract: This study introduces a new approach to the development of generalized 1-parameter, 2-variable Hermite–Frobenius–Euler polynomials, which are characterized by their generating functions, series definitions and summation formulae. Additionally, the research utilizes a factorization method to establish recurrence relations, shift operators and various differential equations, including differential, integro-differential and partial differential equations. The framework elucidates the fundamental properties of these polynomials by utilizing generating functions, series definitions and summation formulae. The results of the study contribute to the understanding of the properties of these polynomials and their potential applications.

Date: 2024
References: Add references at CitEc
Citations:

Downloads: (external link)
http://hdl.handle.net/10.1080/13873954.2024.2396713 (text/html)
Access to full text is restricted to subscribers.

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:taf:nmcmxx:v:30:y:2024:i:1:p:683-700

Ordering information: This journal article can be ordered from
http://www.tandfonline.com/pricing/journal/NMCM20

DOI: 10.1080/13873954.2024.2396713

Access Statistics for this article

Mathematical and Computer Modelling of Dynamical Systems is currently edited by I. Troch

More articles in Mathematical and Computer Modelling of Dynamical Systems from Taylor & Francis Journals
Bibliographic data for series maintained by Chris Longhurst ().

 
Page updated 2025-03-20
Handle: RePEc:taf:nmcmxx:v:30:y:2024:i:1:p:683-700