EconPapers    
Economics at your fingertips  
 

Some identities related to degenerate Bernoulli and degenerate Euler polynomials

Taekyun Kim, Dae San Kim, Wonjoo Kim and Jongkyum Kwon

Mathematical and Computer Modelling of Dynamical Systems, 2024, vol. 30, issue 1, 882-897

Abstract: The aim of this paper is to study degenerate Bernoulli and degenerate Euler polynomials and numbers and their higher-order analogues. We express the degenerate Euler polynomials in terms of the degenerate Bernoulli polynomials and vice versa. We prove the distribution formulas for degenerate Bernoulli and degenerate Euler polynomials. We obtain some identities among the higher-order degenerate Bernoulli and higher-order degenerate Euler polynomials. We express the higher-order degenerate Bernoulli polynomials in $x + y$x+y as a linear combination of the degenerate Euler polynomials in $y$y. We get certain identities involving the degenerate $r$r-Stirling numbers of the second and the binomial coefficients.

Date: 2024
References: Add references at CitEc
Citations:

Downloads: (external link)
http://hdl.handle.net/10.1080/13873954.2024.2425155 (text/html)
Access to full text is restricted to subscribers.

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:taf:nmcmxx:v:30:y:2024:i:1:p:882-897

Ordering information: This journal article can be ordered from
http://www.tandfonline.com/pricing/journal/NMCM20

DOI: 10.1080/13873954.2024.2425155

Access Statistics for this article

Mathematical and Computer Modelling of Dynamical Systems is currently edited by I. Troch

More articles in Mathematical and Computer Modelling of Dynamical Systems from Taylor & Francis Journals
Bibliographic data for series maintained by Chris Longhurst ().

 
Page updated 2025-03-20
Handle: RePEc:taf:nmcmxx:v:30:y:2024:i:1:p:882-897