Plastic Structural Analysis Under Stochastic Uncertainty
K. Marti
Mathematical and Computer Modelling of Dynamical Systems, 2003, vol. 9, issue 3, 303-325
Abstract:
Problems from limit load or shakedown analysis are based on the convex, linear or linearized yield/strength condition and the linear equilibrium equation for the generic stress vector. Having to take into account, in practice, stochastic variations of the model parameters (e.g., yield stresses, plastic capacities) and external loadings, the basic stochastic plastic analysis problem must be replaced by an appropriate deterministic substitute problem. Instead of calculating approximatively the probability of failure based on a certain choice of failure modes, here, a direct approach is presented based on the costs for missing carrying capacity and the failure costs (e.g., costs for damage, repair, compensation for weakness within the structure, etc.). Based on the basic mechanical survival conditions, the failure costs may be represented by the minimum value of a convex and often linear program. Several mathematical properties of this program are shown. Minimizing then the total expected costs subject to the remaining (simple) deterministic constraints, a stochastic optimization problem is obtained which may be represented by a “Stochastic Convex Program (SCP) with recourse”. Working with linearized yield/strength conditions, a “Stochastic Linear Program (SLP) with complete fixed recourse” is obtained. In case of a discretely distributed probability distribution or after the discretization of a more general probability distribution of the random structural parameters and loadings as well as certain random cost factors one has a linear program (LP) with a so-called “dual decomposition data” structure. For stochastic programs of this type many theoretical results and efficient numerical solution procedures (LP-solver) are available. The mathematical properties of theses substitute problems are considered. Furthermore approximate analytical formulas for the limit load factor are given.
Date: 2003
References: Add references at CitEc
Citations:
Downloads: (external link)
http://hdl.handle.net/10.1076/mcmd.9.3.303.24149 (text/html)
Access to full text is restricted to subscribers.
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:taf:nmcmxx:v:9:y:2003:i:3:p:303-325
Ordering information: This journal article can be ordered from
http://www.tandfonline.com/pricing/journal/NMCM20
DOI: 10.1076/mcmd.9.3.303.24149
Access Statistics for this article
Mathematical and Computer Modelling of Dynamical Systems is currently edited by I. Troch
More articles in Mathematical and Computer Modelling of Dynamical Systems from Taylor & Francis Journals
Bibliographic data for series maintained by Chris Longhurst ().