EconPapers    
Economics at your fingertips  
 

A simulation-based product diffusion forecasting method using geometric Brownian motion and spline interpolation

Najmeh Madadi, Azanizawati Ma’aram and Kuan Yew Wong

Cogent Business & Management, 2017, vol. 4, issue 1, 1300992

Abstract: This study addresses the problem of stochasticity in forecasting diffusion of a new product with scarce historical data. Demand uncertainties are calibrated using a geometric Brownian motion (GBM) process. The spline interpolation (SI) method and curve fitting process have been utilized to obtain parameters of the constructed GBM-based differential equation over the product’s life cycle (PLC). The constructed stochastic differential equation is coded as the forecast model and is simulated using MATLAB. The results are several sample demand paths generated from simulation of the forecast model. To evaluate the forecasting performance of the proposed method it is compared with Holt’s model, using actual data from the semiconductor industry. The comparison results confirm the applicability of the proposed method in the semiconductor industry. The method can be helpful for policy-makers who require the prediction of uncertain demand over a time horizon, such as decisions associated with aggregate production planning, capacity planning, and supply chain network design. Especially for the semiconductor industry with intensive capital investment the proposed approach can be useful for making decisions associated with capacity allocation and expansion.

Date: 2017
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (2)

Downloads: (external link)
http://hdl.handle.net/10.1080/23311975.2017.1300992 (text/html)
Access to full text is restricted to subscribers.

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:taf:oabmxx:v:4:y:2017:i:1:p:1300992

Ordering information: This journal article can be ordered from
http://cogentoa.tandfonline.com/journal/OABM20

DOI: 10.1080/23311975.2017.1300992

Access Statistics for this article

Cogent Business & Management is currently edited by Len Tiu Wright and Tahir Nisar

More articles in Cogent Business & Management from Taylor & Francis Journals
Bibliographic data for series maintained by Chris Longhurst ().

 
Page updated 2025-03-20
Handle: RePEc:taf:oabmxx:v:4:y:2017:i:1:p:1300992