A Bitcoin price prediction model assuming oscillatory growth and lengthening cycles
Guizhou Wang and
Kjell Hausken
Cogent Economics & Finance, 2022, vol. 10, issue 1, 2087287
Abstract:
This article’s motivation is to understand the volatile Bitcoin price increase. The objective is to develop price estimation methods. The methodology is to present five differential equation models estimated against the 23 July 2010–21 June 2021 Bitcoin data. The findings are that Gompertz growth fits the damped oscillations and lengthening cycles well, and tracks the early data better with the weighted least squares method. Gompertz growth combined with charged capacitor growth tracks the early data even better. Logistic growth is too slow to track the early data. Logistic growth combined with charged capacitor growth to some extent tracks the early data. Pure charged capacitor growth is unrealistic. The dates for the future bull market maxima depend to a low degree on the growth model carrying capacity approached asymptotically, assumed to match gold at $10 trillion, and to be 50 times higher. The implications for traders are to focus on the large standard deviations. Investors should understand the growth potential compared with other asset classes. Regulators should ensure financial stability by focusing on the fluctuations. Central banks should adjust the money supply while acknowledging. Bitcoin competition. Collective units should understand Bitcoin growth models to determine whether to accept Bitcoin transactions.
Date: 2022
References: Add references at CitEc
Citations: View citations in EconPapers (2)
Downloads: (external link)
http://hdl.handle.net/10.1080/23322039.2022.2087287 (text/html)
Access to full text is restricted to subscribers.
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:taf:oaefxx:v:10:y:2022:i:1:p:2087287
Ordering information: This journal article can be ordered from
http://www.tandfonline.com/pricing/journal/OAEF20
DOI: 10.1080/23322039.2022.2087287
Access Statistics for this article
Cogent Economics & Finance is currently edited by Steve Cook, Caroline Elliott, David McMillan, Duncan Watson and Xibin Zhang
More articles in Cogent Economics & Finance from Taylor & Francis Journals
Bibliographic data for series maintained by Chris Longhurst ().