Modelling volatility in job loss during the COVID-19 pandemic: The Malaysian case
Muzafar Shah Habibullah,
Mohd Yusof Saari,
Ibrahim Kabiru Maji,
Badariah Haji Din and
Nur Surayya Mohd Saudi
Cogent Economics & Finance, 2024, vol. 12, issue 1, 2291886
Abstract:
This study employs a suitable volatility model that examines the impact of COVID-19 new cases and deaths on the volatility of daily job loss in Malaysia. Autoregressive Distributed Lag (ARDL) and Generalized Autoregressive Conditional Heteroscedasticity (GARCH) were employed as the modelling strategy to estimate daily data from January to December 2020. In addition, the asymmetric GARCH-M (EGARCH-M, TGARCH-M, and PGARCH-M) were further applied. The findings from different versions of the ARDL(p,q1,q2)-(E,T,P)GARCH(1,1)-M model show that the ARDL-EGARCH-M model can capture the volatility and clustering of variability in job loss. The findings revealed asymmetry effects, suggesting that negative shocks (bad news) in a pandemic period increased volatility in job loss compared to positive shocks (good news). Policy implications relating to lockdown measures and news signals were provided.
Date: 2024
References: Add references at CitEc
Citations:
Downloads: (external link)
http://hdl.handle.net/10.1080/23322039.2023.2291886 (text/html)
Access to full text is restricted to subscribers.
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:taf:oaefxx:v:12:y:2024:i:1:p:2291886
Ordering information: This journal article can be ordered from
http://www.tandfonline.com/pricing/journal/OAEF20
DOI: 10.1080/23322039.2023.2291886
Access Statistics for this article
Cogent Economics & Finance is currently edited by Steve Cook, Caroline Elliott, David McMillan, Duncan Watson and Xibin Zhang
More articles in Cogent Economics & Finance from Taylor & Francis Journals
Bibliographic data for series maintained by Chris Longhurst ().