Taking into account the rate of convergence in CLT under Risk evaluation on financial markets
Levon Kazaryan and
Gregory Kantorovich
Authors registered in the RePEc Author Service: Григорий Гельмутович Канторович
Cogent Economics & Finance, 2017, vol. 5, issue 1, 1302870
Abstract:
This paper examines “fat tails puzzle” in the financial markets. Ignoring the rate of convergence in Central Limit Theorem (CLT) provides the “fat tail” uncertainty. In this paper, we provide a review of the empirical results obtained “fat tails puzzle” using innovative method of Yuri Gabovich based on the rate of convergence in CLT to the normal distribution, which is called G-bounds. Constructed G-bounds evaluate risk in the financial markets more carefully than models based on Gaussian distributions. This statement was tested on the 24 financial markets exploring their stock indexes. Besides, this has tested Weak-Form Market Efficiency for investigated markets. As a result, we found out the negative correlation between the weak effectiveness of the stock market and the thickness of the left tail of the profitability density function. Therefore, the closer the risk of losses on the stock market to the corresponding risk of loss for a normal distribution, the higher the probability that the market is weak effective. For non-effective markets, the probability of large losses is much higher than for a weak effective.
Date: 2017
References: View references in EconPapers View complete reference list from CitEc
Citations:
Downloads: (external link)
http://hdl.handle.net/10.1080/23322039.2017.1302870 (text/html)
Access to full text is restricted to subscribers.
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:taf:oaefxx:v:5:y:2017:i:1:p:1302870
Ordering information: This journal article can be ordered from
http://www.tandfonline.com/pricing/journal/OAEF20
DOI: 10.1080/23322039.2017.1302870
Access Statistics for this article
Cogent Economics & Finance is currently edited by Steve Cook, Caroline Elliott, David McMillan, Duncan Watson and Xibin Zhang
More articles in Cogent Economics & Finance from Taylor & Francis Journals
Bibliographic data for series maintained by Chris Longhurst ().