Robust estimation with flexible parametric distributions: estimation of utility stock betas
James McDonald,
Richard Michelfelder and
Panayiotis Theodossiou ()
Quantitative Finance, 2010, vol. 10, issue 4, 375-387
Abstract:
The distributions of stock returns and capital asset pricing model (CAPM) regression residuals are typically characterized by skewness and kurtosis. We apply four flexible probability density functions (pdfs) to model possible skewness and kurtosis in estimating the parameters of the CAPM and compare the corresponding estimates with ordinary least squares (OLS) and other symmetric distribution estimates. Estimation using the flexible pdfs provides more efficient results than OLS when the errors are non-normal and similar results when the errors are normal. Large estimation differences correspond to clear departures from normality. Our results show that OLS is not the best estimator of betas using this type of data. Our results suggest that the use of OLS CAPM betas may lead to erroneous estimates of the cost of capital for public utility stocks.
Keywords: Robust estimation; Beta; Flexible distributions; Skewness; Kurtosis (search for similar items in EconPapers)
Date: 2010
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (7)
Downloads: (external link)
http://www.tandfonline.com/doi/abs/10.1080/14697680902814241 (text/html)
Access to full text is restricted to subscribers.
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:taf:quantf:v:10:y:2010:i:4:p:375-387
Ordering information: This journal article can be ordered from
http://www.tandfonline.com/pricing/journal/RQUF20
DOI: 10.1080/14697680902814241
Access Statistics for this article
Quantitative Finance is currently edited by Michael Dempster and Jim Gatheral
More articles in Quantitative Finance from Taylor & Francis Journals
Bibliographic data for series maintained by Chris Longhurst ().