Exact properties of measures of optimal investment for benchmarked portfolios
John Knight and
S. E. Satchell
Quantitative Finance, 2010, vol. 10, issue 5, 495-502
Abstract:
We revisit the problem of calculating the exact distribution of optimal investments in a mean variance world under multivariate normality. The context we consider is where problems in optimisation are addressed through the use of Monte-Carlo simulation. Our findings give clear insight as to when Monte-Carlo simulation will, and will not work. Whilst a number of authors have considered aspects of this exact problem before, we extend the problem by considering the problem of an investor who wishes to maximise quadratic utility defined in terms of alpha and tracking errors. The results derived allow some exact and numerical analysis. Furthermore, they allow us to also derive results for the more traditional non-benchmarked portfolio problem.
Keywords: Portfolio analysis; Portfolio theory; Optimization; Advanced econometrics (search for similar items in EconPapers)
Date: 2010
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (5)
Downloads: (external link)
http://www.tandfonline.com/doi/abs/10.1080/14697680903061412 (text/html)
Access to full text is restricted to subscribers.
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:taf:quantf:v:10:y:2010:i:5:p:495-502
Ordering information: This journal article can be ordered from
http://www.tandfonline.com/pricing/journal/RQUF20
DOI: 10.1080/14697680903061412
Access Statistics for this article
Quantitative Finance is currently edited by Michael Dempster and Jim Gatheral
More articles in Quantitative Finance from Taylor & Francis Journals
Bibliographic data for series maintained by Chris Longhurst ().