An efficient algorithm for pricing barrier options in arbitrage-free binomial models with calibrated drift terms
Christoph Woster
Quantitative Finance, 2010, vol. 10, issue 5, 555-564
Abstract:
The interrelation between the drift coefficient of price processes on arbitrage-free financial markets and the corresponding transition probabilities induced by a martingale measure is analysed in a discrete setup. As a result, we obtain a flexible setting that encompasses most arbitrage-free binomial models. It is argued that knowledge of the link between drift and transition probabilities may be useful for pricing derivatives such as barrier options. The idea is illustrated in a simple example and later extended to a general numerical procedure. The results indicate that the option values in our fitted drift model converge much faster to closed-form solutions of continuous models for a wider range of contract specifications than those of conventional binomial models.
Keywords: Numerical methods for option pricing; Binomial trees; Risk management; Option pricing; Barrier option (search for similar items in EconPapers)
Date: 2010
References: View references in EconPapers View complete reference list from CitEc
Citations:
Downloads: (external link)
http://www.tandfonline.com/doi/abs/10.1080/14697680902828456 (text/html)
Access to full text is restricted to subscribers.
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:taf:quantf:v:10:y:2010:i:5:p:555-564
Ordering information: This journal article can be ordered from
http://www.tandfonline.com/pricing/journal/RQUF20
DOI: 10.1080/14697680902828456
Access Statistics for this article
Quantitative Finance is currently edited by Michael Dempster and Jim Gatheral
More articles in Quantitative Finance from Taylor & Francis Journals
Bibliographic data for series maintained by Chris Longhurst ().