Portfolio selection based on the mean-VaR efficient frontier
Chueh-Yung Tsao
Quantitative Finance, 2010, vol. 10, issue 8, 931-945
Abstract:
Value-at-Risk (VaR) has become one of the standard measures for assessing risk not only in the financial industry but also for asset allocations of individual investors. The traditional mean-variance framework for portfolio selection should, however, be revised when the investor's concern is the VaR instead of the standard deviation. This is especially true when asset returns are not normal. In this paper, we incorporate VaR in portfolio selection, and we propose a mean-VaR efficient frontier. Due to the two-objective optimization problem that is associated with the mean-VaR framework, an evolutionary multi-objective approach is required to construct the mean-VaR efficient frontier. Specifically, we consider the elitist non-dominated sorting Genetic Algorithm (NSGA-II). From our empirical analysis, we conclude that the risk-averse investor might inefficiently allocate his/her wealth if his/her decision is based on the mean-variance framework.
Keywords: Efficient frontiers; Value at Risk; Genetic algorithms; Portfolio selection; NSGA-II (search for similar items in EconPapers)
Date: 2010
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (8)
Downloads: (external link)
http://www.tandfonline.com/doi/abs/10.1080/14697681003652514 (text/html)
Access to full text is restricted to subscribers.
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:taf:quantf:v:10:y:2010:i:8:p:931-945
Ordering information: This journal article can be ordered from
http://www.tandfonline.com/pricing/journal/RQUF20
DOI: 10.1080/14697681003652514
Access Statistics for this article
Quantitative Finance is currently edited by Michael Dempster and Jim Gatheral
More articles in Quantitative Finance from Taylor & Francis Journals
Bibliographic data for series maintained by Chris Longhurst ().