Characterizing heteroskedasticity
Gilles Zumbach
Quantitative Finance, 2011, vol. 11, issue 9, 1357-1369
Abstract:
Volatility clustering, or heteroskedasticity, is an important feature of all financial time series. In particular, the lagged correlation for the volatility is slowly decreasing with increasing lags. This paper characterizes its decay. First, Monte Carlo simulations are used to select the best volatility and correlation estimators for this task. Second, the empirical lagged correlations are studied over a set of 225 daily time series, and for the DJIA with a sample size of one century. The results strongly favor a log-decay shape, while an exponential and power law decay do not describe the data well. The implications for the description of financial time series by processes are important, as these findings exclude hyperbolic decay, but favor volatility cascade and multi-component ARCH processes. Third, the analysis of the decay coefficient shows that time series related to emerging countries have a shorter memory, in agreement with an analysis of the Hurst exponents published recently.
Date: 2011
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (2)
Downloads: (external link)
http://hdl.handle.net/10.1080/14697688.2010.535555 (text/html)
Access to full text is restricted to subscribers.
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:taf:quantf:v:11:y:2011:i:9:p:1357-1369
Ordering information: This journal article can be ordered from
http://www.tandfonline.com/pricing/journal/RQUF20
DOI: 10.1080/14697688.2010.535555
Access Statistics for this article
Quantitative Finance is currently edited by Michael Dempster and Jim Gatheral
More articles in Quantitative Finance from Taylor & Francis Journals
Bibliographic data for series maintained by Chris Longhurst ().