EconPapers    
Economics at your fingertips  
 

Optimal insurance contract and coverage levels under loss aversion utility preference

Ching-Ping Wang and Hung-Hsi Huang

Quantitative Finance, 2012, vol. 12, issue 10, 1615-1628

Abstract: This study develops an optimal insurance contract endogenously and determines the optimal coverage levels with respect to deductible insurance, upper-limit insurance, and proportional coinsurance, and, by assuming that the insured has an S-shaped loss aversion utility, the insured would retain the enormous losses entirely. The representative optimal insurance form is the truncated deductible insurance , where the insured retains all losses once losses exceed a critical level and adopts a particular deductible otherwise. Additionally, the effects of the optimal coverage levels are also examined with respect to benchmark wealth and loss aversion coefficient. Moreover, the efficiencies among various insurances are compared via numerical analysis by assuming that the loss obeys a uniform or log-normal distribution. In addition to optimal insurance, deductible insurance is the most efficient if the benchmark wealth is small and upper-limit insurance if large. In the case of a uniform distribution that has an upper bound, deductible insurance and optimal insurance coincide if benchmark wealth is small. Conversely, deductible insurance is never optimal for an unbounded loss such as a log-normal distribution.

Date: 2012
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (3)

Downloads: (external link)
http://hdl.handle.net/10.1080/14697688.2011.564200 (text/html)
Access to full text is restricted to subscribers.

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:taf:quantf:v:12:y:2012:i:10:p:1615-1628

Ordering information: This journal article can be ordered from
http://www.tandfonline.com/pricing/journal/RQUF20

DOI: 10.1080/14697688.2011.564200

Access Statistics for this article

Quantitative Finance is currently edited by Michael Dempster and Jim Gatheral

More articles in Quantitative Finance from Taylor & Francis Journals
Bibliographic data for series maintained by Chris Longhurst ().

 
Page updated 2025-03-20
Handle: RePEc:taf:quantf:v:12:y:2012:i:10:p:1615-1628