Truncation and acceleration of the Tian tree for the pricing of American put options
Ting Chen and
Mark Joshi
Quantitative Finance, 2012, vol. 12, issue 11, 1695-1708
Abstract:
We present a new method for truncating binomial trees based on using a tolerance to control truncation errors and apply it to the Tian tree together with acceleration techniques of smoothing and Richardson extrapolation. For both the current (based on standard deviations) and the new (based on tolerance) truncation methods, we test different truncation criteria, levels and replacement values to obtain the best combination for each required level of accuracy. We also provide numerical results demonstrating that the new method can be 50% faster than previously presented methods when pricing American put options in the Black--Scholes model.
Date: 2012
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (2)
Downloads: (external link)
http://hdl.handle.net/10.1080/14697688.2011.617776 (text/html)
Access to full text is restricted to subscribers.
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:taf:quantf:v:12:y:2012:i:11:p:1695-1708
Ordering information: This journal article can be ordered from
http://www.tandfonline.com/pricing/journal/RQUF20
DOI: 10.1080/14697688.2011.617776
Access Statistics for this article
Quantitative Finance is currently edited by Michael Dempster and Jim Gatheral
More articles in Quantitative Finance from Taylor & Francis Journals
Bibliographic data for series maintained by Chris Longhurst ().