EconPapers    
Economics at your fingertips  
 

A comparison of statistical tests for the adequacy of a neural network regression model

Nikos S. Thomaidis and Georgios D. Dounias

Quantitative Finance, 2012, vol. 12, issue 3, 437-449

Abstract: An integral part of econometric practice is to test the adequacy of model specifications. If a model is adequately specified, it should not leave interesting features of the data-generating process in the errors. Despite the common tradition, the importance of diagnostic checking as a safeguard against mis-specification has only recently been recognized by neural network (NN) practitioners, possibly because this type of semi-parametric methodology was not originally designed for economic and financial applications. The purpose of this paper is to compare a number of analytical statistical testing procedures suitable to diagnostic checking on a neural network regression model. We present the standard Lagrange multiplier (LM) testing framework designed under the assumption of identically distributed disturbances and also examine two modifications that are robust to heteroskedasticity in errors. One modification also gives the researcher an opportunity to incorporate information concerning the volatility structure of the data-generating process in the testing procedure. By means of a Monte Carlo simulation, we investigate the performance of these tests under GARCH-type heteroskedasticity in errors and various distributional assumptions. The results show that although the primary concern of the researcher may be to design a regression model that accurately captures relations in the mean of the conditional distribution, developing a good approximation of the underlying volatility structure generally increases the efficiency of tests in detecting non-adequacy of a NN model. † http://fidelity.fme.ae gean.gr/decision

Date: 2012
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (4)

Downloads: (external link)
http://hdl.handle.net/10.1080/14697680903426573 (text/html)
Access to full text is restricted to subscribers.

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:taf:quantf:v:12:y:2012:i:3:p:437-449

Ordering information: This journal article can be ordered from
http://www.tandfonline.com/pricing/journal/RQUF20

DOI: 10.1080/14697680903426573

Access Statistics for this article

Quantitative Finance is currently edited by Michael Dempster and Jim Gatheral

More articles in Quantitative Finance from Taylor & Francis Journals
Bibliographic data for series maintained by Chris Longhurst ().

 
Page updated 2025-03-20
Handle: RePEc:taf:quantf:v:12:y:2012:i:3:p:437-449