Nonlinear problems modeling stochastic volatility and transaction costs
Maria C. Mariani and
Indranil SenGupta
Quantitative Finance, 2012, vol. 12, issue 4, 663-670
Abstract:
The option pricing problem when the asset is driven by a stochastic volatility process and in the presence of transaction costs leads to solving a nonlinear partial differential equation (PDE). The nonlinear term in the PDE reflects the presence of transaction costs. Under a particular market completion assumption we derive the nonlinear PDE whose solution may be used to find the price of options. Under suitable conditions, we give an algorithmic scheme to obtain the solution of the problem by an iterative method. We prove theoretically the existence of strong solutions to the problem.
Date: 2012
References: View complete reference list from CitEc
Citations: View citations in EconPapers (1)
Downloads: (external link)
http://hdl.handle.net/10.1080/14697688.2012.664944 (text/html)
Access to full text is restricted to subscribers.
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:taf:quantf:v:12:y:2012:i:4:p:663-670
Ordering information: This journal article can be ordered from
http://www.tandfonline.com/pricing/journal/RQUF20
DOI: 10.1080/14697688.2012.664944
Access Statistics for this article
Quantitative Finance is currently edited by Michael Dempster and Jim Gatheral
More articles in Quantitative Finance from Taylor & Francis Journals
Bibliographic data for series maintained by Chris Longhurst ().