EconPapers    
Economics at your fingertips  
 

A closed-form solution to American options under general diffusion processes

Jing Zhao and Hoi Ying Wong

Quantitative Finance, 2012, vol. 12, issue 5, 725-737

Abstract: This paper investigates American option pricing under general diffusion processes. Specifically, the underlying asset price is assumed to follow a diffusion process in which both the dividend yield and volatility are functions of time and the underlying asset price. Using the generalized homotopy analysis method, the determination of the early exercise boundary is separated from the valuation procedure of American options. Then, an exact and explicit solution for American options on a dividend-paying stock is derived as a Maclaurin series. In addition, the corresponding optimal early exercise boundary and the Greeks are obtained in closed-form solutions. A nonlinear sequence transformation, the Pad� technique, is used to effectively accelerate the convergence of the partial sums of the infinite series. As the homotopy constructed in this paper is based on a generalized deformation with a shape parameter and kernel function, the error of the homotopic approximation could be reduced further for a fixed order. Numerical examples demonstrate the validity, effectiveness, and flexibility of the proposed approach.

Date: 2012
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (8)

Downloads: (external link)
http://hdl.handle.net/10.1080/14697680903193405 (text/html)
Access to full text is restricted to subscribers.

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:taf:quantf:v:12:y:2012:i:5:p:725-737

Ordering information: This journal article can be ordered from
http://www.tandfonline.com/pricing/journal/RQUF20

DOI: 10.1080/14697680903193405

Access Statistics for this article

Quantitative Finance is currently edited by Michael Dempster and Jim Gatheral

More articles in Quantitative Finance from Taylor & Francis Journals
Bibliographic data for series maintained by Chris Longhurst ().

 
Page updated 2025-03-20
Handle: RePEc:taf:quantf:v:12:y:2012:i:5:p:725-737