Economics at your fingertips  

Optimal high-frequency trading with limit and market orders

Fabien Guilbaud and Huyên Pham

Quantitative Finance, 2013, vol. 13, issue 1, 79-94

Abstract: We propose a framework for studying optimal market-making policies in a limit order book (LOB). The bid--ask spread of the LOB is modeled by a tick-valued continuous-time Markov chain. We consider a small agent who continuously submits limit buy/sell orders at best bid/ask quotes, and may also set limit orders at best bid (resp. ask) plus (resp. minus) a tick for obtaining execution order priority, which is a crucial issue in high-frequency trading. The agent faces an execution risk since her limit orders are executed only when they meet counterpart market orders. She is also subject to inventory risk due to price volatility when holding the risky asset. The agent can then also choose to trade with market orders, and therefore obtain immediate execution, but at a less favorable price. The objective of the market maker is to maximize her expected utility from revenue over a short-term horizon by a trade-off between limit and market orders, while controlling her inventory position. This is formulated as a mixed regime switching regular/impulse control problem that we characterize in terms of a quasi-variational system by dynamic programming methods. Calibration procedures are derived for estimating the transition matrix and intensity parameters for the spread and for Cox processes modelling the execution of limit orders. We provide an explicit backward splitting scheme for solving the problem and show how it can be reduced to a system of simple equations involving only the inventory and spread variables. Several computational tests are performed both on simulated and real data, and illustrate the impact and profit when considering execution priority in limit orders and market orders.

Date: 2013
References: View references in EconPapers View complete reference list from CitEc
Citations View citations in EconPapers (27) Track citations by RSS feed

Downloads: (external link) (text/html)
Access to full text is restricted to subscribers.

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link:

Ordering information: This journal article can be ordered from

Access Statistics for this article

Quantitative Finance is currently edited by Michael Dempster and Jim Gatheral

More articles in Quantitative Finance from Taylor & Francis Journals
Bibliographic data for series maintained by Chris Longhurst ().

Page updated 2018-04-14
Handle: RePEc:taf:quantf:v:13:y:2013:i:1:p:79-94