Multiplicative noise, fast convolution and pricing
Giacomo Bormetti and
Sofia Cazzaniga
Quantitative Finance, 2014, vol. 14, issue 3, 481-494
Abstract:
In this work we detail the application of a fast convolution algorithm to compute high-dimensional integrals in the context of multiplicative noise stochastic processes. The algorithm provides a numerical solution to the problem of characterizing conditional probability density functions at arbitrary times, and we apply it successfully to quadratic and piecewise linear diffusion processes. The ability to reproduce statistical features of financial return time series, such as thickness of the tails and scaling properties, makes these processes appealing for option pricing. Since exact analytical results are lacking, we exploit the fast convolution as a numerical method alternative to Monte Carlo simulation both in the objective and risk-neutral settings. In numerical sections we document how fast convolution outperforms Monte Carlo both in speed and efficiency terms.
Date: 2014
References: View references in EconPapers View complete reference list from CitEc
Citations:
Downloads: (external link)
http://hdl.handle.net/10.1080/14697688.2012.729857 (text/html)
Access to full text is restricted to subscribers.
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:taf:quantf:v:14:y:2014:i:3:p:481-494
Ordering information: This journal article can be ordered from
http://www.tandfonline.com/pricing/journal/RQUF20
DOI: 10.1080/14697688.2012.729857
Access Statistics for this article
Quantitative Finance is currently edited by Michael Dempster and Jim Gatheral
More articles in Quantitative Finance from Taylor & Francis Journals
Bibliographic data for series maintained by Chris Longhurst ().