Economics at your fingertips  

Smooth monotone covariance for elliptical distributions and applications in finance

Xiaoping Zhou, Dmitry Malioutov, Frank Fabozzi () and Svetlozar T. Rachev

Quantitative Finance, 2014, vol. 14, issue 9, 1555-1571

Abstract: Sample covariance is known to be a poor estimate when the data are scarce compared with the dimension. To reduce the estimation error, various structures are usually imposed on the covariance such as low-rank plus diagonal (factor models), banded models and sparse inverse covariances. We investigate a different non-parametric regularization method which assumes that the covariance is monotone and smooth. We study the smooth monotone covariance by analysing its performance in reducing various statistical distances and improving optimal portfolio selection. We also extend its use in non-Gaussian cases by incorporating various robust covariance estimates for elliptical distributions. Finally, we provide two empirical examples using Eurodollar futures and corporate bonds where the smooth monotone covariance improves the out-of-sample covariance prediction and portfolio optimization.

Date: 2014
References: View references in EconPapers View complete reference list from CitEc
Citations: Track citations by RSS feed

Downloads: (external link) (text/html)
Access to full text is restricted to subscribers.

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link:

Ordering information: This journal article can be ordered from

Access Statistics for this article

Quantitative Finance is currently edited by Michael Dempster and Jim Gatheral

More articles in Quantitative Finance from Taylor & Francis Journals
Bibliographic data for series maintained by Chris Longhurst ().

Page updated 2019-10-05
Handle: RePEc:taf:quantf:v:14:y:2014:i:9:p:1555-1571