Hedge fund replication with a genetic algorithm: breeding a usable mousetrap
Brian C. Payne and
Jiri Tresl
Quantitative Finance, 2014, vol. 15, issue 10, 1705-1726
Abstract:
This study tests the performance of 14 hedge fund index clones created using parsimonious out-of-sample replication portfolios consisting solely of easily accessible assets. We employ a genetic algorithm to integrate two traditional hedge fund replication methods, the factor-based and pay-off distribution replication methods, and evaluate over 4500 commonly held stocks, bonds and mutual funds as replicating portfolio components. In-sample performance indicates that hedge funds have return series similar to portfolios of commonly held assets, and out-of-sample results provide evidence that the in-sample relationships can hold with infrequent rebalancing. This hedge fund replication attempt rates well relatively to prior efforts as 11 replicating portfolios have out-of-sample correlation values of at least 60%. Overall, these results show promise for using a genetic algorithm technique to replicate hedge fund returns.
Date: 2014
References: View complete reference list from CitEc
Citations: View citations in EconPapers (1)
Downloads: (external link)
http://hdl.handle.net/10.1080/14697688.2014.979222 (text/html)
Access to full text is restricted to subscribers.
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:taf:quantf:v:15:y:2015:i:10:p:1705-1726
Ordering information: This journal article can be ordered from
http://www.tandfonline.com/pricing/journal/RQUF20
DOI: 10.1080/14697688.2014.979222
Access Statistics for this article
Quantitative Finance is currently edited by Michael Dempster and Jim Gatheral
More articles in Quantitative Finance from Taylor & Francis Journals
Bibliographic data for series maintained by Chris Longhurst ().