Two-step methods in VaR prediction and the importance of fat tails
Ibrahim Ergen
Quantitative Finance, 2015, vol. 15, issue 6, 1013-1030
Abstract:
This paper proposes a two-step methodology for Value-at-Risk prediction. The first step involves estimation of a GARCH model using quasi-maximum likelihood estimation and the second step uses model filtered returns with the skewed t distribution of Azzalini and Capitanio [ J. R. Stat. Soc. B , 2003, 65 , 367-389]. The predictive performance of this method is compared to the single-step joint estimation of the same data generating process, to the well-known GARCH-Evt model and to a comprehensive set of other market risk models. Backtesting results show that the proposed two-step method outperforms most benchmarks including the classical joint estimation method of same data generating process and it performs competitively with respect to the GARCH-Evt model. This paper recommends two robust models to risk managers of emerging market stock portfolios. Both models are estimated in two steps: the GJR-GARCH-Evt model and the two-step GARCH-St model proposed in this study.
Date: 2015
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (8)
Downloads: (external link)
http://hdl.handle.net/10.1080/14697688.2014.942230 (text/html)
Access to full text is restricted to subscribers.
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:taf:quantf:v:15:y:2015:i:6:p:1013-1030
Ordering information: This journal article can be ordered from
http://www.tandfonline.com/pricing/journal/RQUF20
DOI: 10.1080/14697688.2014.942230
Access Statistics for this article
Quantitative Finance is currently edited by Michael Dempster and Jim Gatheral
More articles in Quantitative Finance from Taylor & Francis Journals
Bibliographic data for series maintained by Chris Longhurst ().