EconPapers    
Economics at your fingertips  
 

A model of returns for the post-credit-crunch reality: hybrid Brownian motion with price feedback

William T. Shaw and Marcus Schofield

Quantitative Finance, 2015, vol. 15, issue 6, 975-998

Abstract: Recent market events have reinvigorated the search for realistic return models that capture greater likelihoods of extreme movements. In this paper we model the medium-term log-return dynamics in a market with both fundamental and technical traders. This is based on a trade arrival model with variable size orders and a general arrival-time distribution. With simplifications we are led in the jump-free case to a local volatility model defined by a hybrid SDE mixing both arithmetic and geometric or CIR Brownian motions, whose solution in the geometric case is given by a class of integrals of exponentials of one Brownian motion against another, in forms considered by Yor and collaborators. The reduction of the hybrid SDE to a single Brownian motion leads to an SDE of the form considered by Nagahara, which is a type of 'Pearson diffusion', or, equivalently, a hyperbolic OU SDE. Various dynamics and equilibria are possible depending on the balance of trades. Under mean-reverting circumstances we arrive naturally at an equilibrium fat-tailed return distribution with a Student or Pearson Type~IV form. Under less-restrictive assumptions, richer dynamics are possible, including time-dependent Johnson-SU distributions and bimodal structures. The phenomenon of variance explosion is identified that gives rise to much larger price movements that might have a priori been expected, so that '25σ' events are significantly more probable. We exhibit simple example solutions of the Fokker-Planck equation that shows how such variance explosion can hide beneath a standard Gaussian facade. These are elementary members of an extended class of distributions with a rich and varied structure, capable of describing a wide range of market behaviors. Several approaches to the density function are possible, and an example of the computation of a hyperbolic VaR is given. The model also suggests generalizations of the Bougerol identity. We touch briefly on the extent to which such a model is consistent with the dynamics of a 'flash-crash' event, and briefly explore the statistical evidence for our model.

Date: 2015
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (1)

Downloads: (external link)
http://hdl.handle.net/10.1080/14697688.2011.642810 (text/html)
Access to full text is restricted to subscribers.

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:taf:quantf:v:15:y:2015:i:6:p:975-998

Ordering information: This journal article can be ordered from
http://www.tandfonline.com/pricing/journal/RQUF20

DOI: 10.1080/14697688.2011.642810

Access Statistics for this article

Quantitative Finance is currently edited by Michael Dempster and Jim Gatheral

More articles in Quantitative Finance from Taylor & Francis Journals
Bibliographic data for series maintained by Chris Longhurst ().

 
Page updated 2025-03-20
Handle: RePEc:taf:quantf:v:15:y:2015:i:6:p:975-998