Computing optimal rebalance frequency for log-optimal portfolios in linear time
Sujit R. Das and
Mukul Goyal
Quantitative Finance, 2015, vol. 15, issue 7, 1191-1204
Abstract:
The pure form of log-optimal investment strategies are often considered to be impractical due to the inherent need for continuous rebalancing. It is however possible to improve investor log utility by adopting a discrete-time periodic rebalancing strategy. Under the assumptions of geometric Brownian motion for assets and approximate log-normality for a sum of log-normal random variables, we find that the optimum rebalance frequency is a piecewise continuous function of investment horizon. One can construct this rebalance strategy function, called the optimal rebalance frequency function , up to a specified investment horizon given a limited trajectory of the expected log of portfolio growth when the initial portfolio is never rebalanced. We develop the analytical framework to compute the optimal rebalance strategy in linear time, a significant improvement from the previously proposed search-based quadratic time algorithm.
Date: 2015
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (2)
Downloads: (external link)
http://hdl.handle.net/10.1080/14697688.2014.926020 (text/html)
Access to full text is restricted to subscribers.
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:taf:quantf:v:15:y:2015:i:7:p:1191-1204
Ordering information: This journal article can be ordered from
http://www.tandfonline.com/pricing/journal/RQUF20
DOI: 10.1080/14697688.2014.926020
Access Statistics for this article
Quantitative Finance is currently edited by Michael Dempster and Jim Gatheral
More articles in Quantitative Finance from Taylor & Francis Journals
Bibliographic data for series maintained by Chris Longhurst ().