Evolution of high-frequency systematic trading: a performance-driven gradient boosting model
Nan Zhou,
Wen Cheng,
Yichen Qin and
Zongcheng Yin
Quantitative Finance, 2015, vol. 15, issue 8, 1387-1403
Abstract:
This paper proposes a performance-driven gradient boosting model (pdGBM) which predicts short-horizon price movements by combining nonlinear response functions of selected predictors. This model performs gradient descent in a constrained functional space by directly minimizing loss functions customized with different trading performance measurements. To demonstrate its practical applications, a simple trading system was designed with trading signals constructed from pdGBM predictions and fixed holding period in each trade. We tested this trading system on the high-frequency data of SPDR S&P 500 index ETF (SPY). In the out-of-sample period, it generated an average of 0.045% return per trade and an annualized Sharpe ratio close to 20 after transaction costs. Various empirical results also showed the model robustness to different parameters. These superior performances confirm the predictability of short-horizon price movements in the US equity market. We also compared the performance of this trading system with similar trading systems based on other predictive models like the gradient boosting model with L2 loss function and the penalized linear model. Results showed that pdGBM substantially outperformed all other models by higher returns in each month of the testing period. Additionally, pdGBM has many advantages including its capability of automatic predictor selection and nonlinear pattern recognition, as well as its simply structured and interpretable output function.
Date: 2015
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (2)
Downloads: (external link)
http://hdl.handle.net/10.1080/14697688.2015.1032541 (text/html)
Access to full text is restricted to subscribers.
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:taf:quantf:v:15:y:2015:i:8:p:1387-1403
Ordering information: This journal article can be ordered from
http://www.tandfonline.com/pricing/journal/RQUF20
DOI: 10.1080/14697688.2015.1032541
Access Statistics for this article
Quantitative Finance is currently edited by Michael Dempster and Jim Gatheral
More articles in Quantitative Finance from Taylor & Francis Journals
Bibliographic data for series maintained by Chris Longhurst ().