A pairs trading strategy based on linear state space models and the Kalman filter
Carlos Eduardo de Moura,
Adrian Pizzinga and
Jorge Zubelli
Quantitative Finance, 2016, vol. 16, issue 10, 1559-1573
Abstract:
Among many strategies for financial trading, pairs trading has played an important role in practical and academic frameworks. Loosely speaking, it involves a statistical arbitrage tool for identifying and exploiting the inefficiencies of two long-term, related financial assets. When a significant deviation from this equilibrium is observed, a profit might result. In this paper, we propose a pairs trading strategy entirely based on linear state space models designed for modelling the spread formed with a pair of assets. Once an adequate state space model for the spread is estimated, we use the Kalman filter to calculate conditional probabilities that the spread will return to its long-term mean. The strategy is activated upon large values of these conditional probabilities: the spread is bought or sold accordingly. Two applications with real data from the US and Brazilian markets are offered, and even though they probably rely on limited evidence, they already indicate that a very basic portfolio consisting of a sole spread outperforms some of the main market benchmarks.
Date: 2016
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (11)
Downloads: (external link)
http://hdl.handle.net/10.1080/14697688.2016.1164886 (text/html)
Access to full text is restricted to subscribers.
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:taf:quantf:v:16:y:2016:i:10:p:1559-1573
Ordering information: This journal article can be ordered from
http://www.tandfonline.com/pricing/journal/RQUF20
DOI: 10.1080/14697688.2016.1164886
Access Statistics for this article
Quantitative Finance is currently edited by Michael Dempster and Jim Gatheral
More articles in Quantitative Finance from Taylor & Francis Journals
Bibliographic data for series maintained by Chris Longhurst ().