Detecting intraday financial market states using temporal clustering
D. Hendricks,
T. Gebbie and
D. Wilcox
Quantitative Finance, 2016, vol. 16, issue 11, 1657-1678
Abstract:
We propose the application of a high-speed maximum likelihood clustering algorithm to detect temporal financial market states, using correlation matrices estimated from intraday market microstructure features. We first determine the ex-ante intraday temporal cluster configurations to identify market states, and then study the identified temporal state features to extract state signature vectors (SSVs) which enable online state detection. The SSVs serve as low-dimensional state descriptors which can be used in learning algorithms for optimal planning in the high-frequency trading domain. We present a feasible scheme for real-time intraday state detection from streaming market data feeds. This study identifies an interesting hierarchy of system behaviour which motivates the need for timescale-specific state space reduction for participating agents.
Date: 2016
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (10)
Downloads: (external link)
http://hdl.handle.net/10.1080/14697688.2016.1171378 (text/html)
Access to full text is restricted to subscribers.
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:taf:quantf:v:16:y:2016:i:11:p:1657-1678
Ordering information: This journal article can be ordered from
http://www.tandfonline.com/pricing/journal/RQUF20
DOI: 10.1080/14697688.2016.1171378
Access Statistics for this article
Quantitative Finance is currently edited by Michael Dempster and Jim Gatheral
More articles in Quantitative Finance from Taylor & Francis Journals
Bibliographic data for series maintained by Chris Longhurst ().