EconPapers    
Economics at your fingertips  
 

Forecasting stock market returns over multiple time horizons

Dimitri Kroujiline, Maxim Gusev, Dmitry Ushanov, Sergey V. Sharov and Boris Govorkov

Quantitative Finance, 2016, vol. 16, issue 11, 1695-1712

Abstract: In this paper, we seek to demonstrate the predictability of stock market returns and explain the nature of this return predictability. To this end, we introduce investors with different investment horizons into the news-driven, analytic, agent-based market model developed in Gusev et al. [Algo. Finance, 2015, 4, 5–51]. This heterogeneous framework enables us to capture dynamics at multiple timescales, expanding the model’s applications and improving precision. We study the heterogeneous model theoretically and empirically to highlight essential mechanisms underlying certain market behaviours, such as transitions between bull and bear markets and the self-similar behaviour of price changes. Most importantly, we apply this model to show that the stock market is nearly efficient on intraday timescales, adjusting quickly to incoming news, but becomes inefficient on longer timescales, where news may have a long-lasting nonlinear impact on dynamics, attributable to a feedback mechanism acting over these horizons. Then, using the model, we design algorithmic strategies that utilize news flow, quantified and measured, as the only input to trade on market return forecasts over multiple horizons, from days to months. The backtested results suggest that the return is predictable to the extent that successful trading strategies can be constructed to harness this predictability.

Date: 2016
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (8)

Downloads: (external link)
http://hdl.handle.net/10.1080/14697688.2016.1176241 (text/html)
Access to full text is restricted to subscribers.

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:taf:quantf:v:16:y:2016:i:11:p:1695-1712

Ordering information: This journal article can be ordered from
http://www.tandfonline.com/pricing/journal/RQUF20

DOI: 10.1080/14697688.2016.1176241

Access Statistics for this article

Quantitative Finance is currently edited by Michael Dempster and Jim Gatheral

More articles in Quantitative Finance from Taylor & Francis Journals
Bibliographic data for series maintained by Chris Longhurst ().

 
Page updated 2025-03-20
Handle: RePEc:taf:quantf:v:16:y:2016:i:11:p:1695-1712