EconPapers    
Economics at your fingertips  
 

Numerical methods for dynamic Bertrand oligopoly and American options under regime switching

Swathi Amarala and Justin W. L. Wan

Quantitative Finance, 2016, vol. 16, issue 11, 1741-1762

Abstract: Bertrand oligopolies are competitive markets in which a small number of firms producing similar goods use price as their strategic variable. In particular, each firm wants to determine the optimal price that maximizes its expected discounted lifetime profit. The oligopoly problem can be modeled as nonzero-sum games which can be formulated as systems of Hamilton–Jacobi–Bellman (HJB) partial differential equations (PDEs). In this paper, we propose fully implicit, positive coefficient finite difference schemes that converge to the viscosity solution for the HJB PDE from dynamic Bertrand monopoly and the two-dimensional HJB system from dynamic Bertrand duopoly. Furthermore, we develop fast multigrid methods for solving these systems of discrete nonlinear HJB PDEs. The new multigrid methods are general and can be applied to other systems of HJB and HJB-Isaacs PDEs arising from American options under regime switching and American options with unequal lending/borrowing rates and stock borrowing fees under regime switching, respectively. We provide a theoretical analysis for the smoother, restriction and interpolation operators of the multigrid methods. Finally, we demonstrate the effectiveness of our method by numerical examples from the dynamic Bertrand problem and pricing American options under regime switching.

Date: 2016
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (1)

Downloads: (external link)
http://hdl.handle.net/10.1080/14697688.2016.1167281 (text/html)
Access to full text is restricted to subscribers.

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:taf:quantf:v:16:y:2016:i:11:p:1741-1762

Ordering information: This journal article can be ordered from
http://www.tandfonline.com/pricing/journal/RQUF20

DOI: 10.1080/14697688.2016.1167281

Access Statistics for this article

Quantitative Finance is currently edited by Michael Dempster and Jim Gatheral

More articles in Quantitative Finance from Taylor & Francis Journals
Bibliographic data for series maintained by Chris Longhurst ().

 
Page updated 2025-03-20
Handle: RePEc:taf:quantf:v:16:y:2016:i:11:p:1741-1762