Economics at your fingertips  

Krill-Herd Support Vector Regression and heterogeneous autoregressive leverage: evidence from forecasting and trading commodities

Charalampos Stasinakis, Georgios Sermpinis, Ioannis Psaradellis and Thanos Verousis ()

Quantitative Finance, 2016, vol. 16, issue 12, 1901-1915

Abstract: In this study, a Krill-Herd Support Vector Regression (KH-vSVR) model is introduced. The Krill Herd (KH) algorithm is a novel metaheuristic optimization technique inspired by the behaviour of krill herds. The KH optimizes the SVR parameters by balancing the search between local and global optima. The proposed model is applied to the task of forecasting and trading three commodity exchange traded funds on a daily basis over the period 2012–2014. The inputs of the KH-vSVR models are selected through the model confidence set from a large pool of linear predictors. The KH-vSVR’s statistical and trading performance is benchmarked against traditionally adjusted SVR structures and the best linear predictor. In addition to a simple strategy, a time-varying leverage trading strategy is applied based on heterogeneous autoregressive volatility estimations. It is shown that the KH-vSVR outperforms its counterparts in terms of statistical accuracy and trading efficiency, while the leverage strategy is found to be successful.

Date: 2016
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (3) Track citations by RSS feed

Downloads: (external link) (text/html)
Access to full text is restricted to subscribers.

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link:

Ordering information: This journal article can be ordered from

DOI: 10.1080/14697688.2016.1211800

Access Statistics for this article

Quantitative Finance is currently edited by Michael Dempster and Jim Gatheral

More articles in Quantitative Finance from Taylor & Francis Journals
Bibliographic data for series maintained by Chris Longhurst ().

Page updated 2023-11-30
Handle: RePEc:taf:quantf:v:16:y:2016:i:12:p:1901-1915