A parsimonious model for generating arbitrage-free scenario trees
Andrea Consiglio (),
Angelo Carollo and
Stavros Zenios
Quantitative Finance, 2016, vol. 16, issue 2, 201-212
Abstract:
Simulation models of economic, financial and business risk factors are widely used to assess risks and support decision-making. Extensive literature on scenario generation methods aims at describing some underlying stochastic processes with the least number of scenarios to overcome the ‘curse of dimensionality’. There is, however, an important requirement that is usually overlooked when one departs from the application domain of security pricing: the no-arbitrage condition. We formulate a moment matching model to generate multi-factor scenario trees for stochastic optimization satisfying no-arbitrage restrictions with a minimal number of scenarios and without any distributional assumptions. The resulting global optimization problem is quite general. However, it is non-convex and can grow significantly with the number of risk factors, and we develop convex lower bounding techniques for its solution exploiting the special structure of the problem. Applications to some standard problems from the literature show that this is a robust approach for tree generation. We use it to price a European basket option in complete and incomplete markets.
Date: 2016
References: View complete reference list from CitEc
Citations: View citations in EconPapers (17)
Downloads: (external link)
http://hdl.handle.net/10.1080/14697688.2015.1114359 (text/html)
Access to full text is restricted to subscribers.
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:taf:quantf:v:16:y:2016:i:2:p:201-212
Ordering information: This journal article can be ordered from
http://www.tandfonline.com/pricing/journal/RQUF20
DOI: 10.1080/14697688.2015.1114359
Access Statistics for this article
Quantitative Finance is currently edited by Michael Dempster and Jim Gatheral
More articles in Quantitative Finance from Taylor & Francis Journals
Bibliographic data for series maintained by Chris Longhurst ().