Modeling and evaluation of the option book hedging problem using stochastic programming
Mathias Barkhagen and
Jörgen Blomvall
Quantitative Finance, 2016, vol. 16, issue 2, 259-273
Abstract:
Hedging of an option book in an incomplete market with transaction costs is an important problem in finance that many banks have to solve on a daily basis. In this paper, we develop a stochastic programming (SP) model for the hedging problem in a realistic setting, where all transactions take place at observed bid and ask prices. The SP model relies on a realistic modeling of the important risk factors for the application, the price of the underlying security and the volatility surface. The volatility surface is unobservable and must be estimated from a cross section of observed option quotes that contain noise and possibly arbitrage. In order to produce arbitrage-free volatility surfaces of high quality as input to the SP model, a novel non-parametric estimation method is used. The dimension of the volatility surface is infinite and in order to be able solve the problem numerically, we use discretization and principal component analysis to reduce the dimensions of the problem. Testing the model out-of-sample for options on the Swedish OMXS30 index, we show that the SP model is able to produce a hedge that has both a lower realized risk and cost compared with dynamic delta and delta-vega hedging strategies.
Date: 2016
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (2)
Downloads: (external link)
http://hdl.handle.net/10.1080/14697688.2015.1114358 (text/html)
Access to full text is restricted to subscribers.
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:taf:quantf:v:16:y:2016:i:2:p:259-273
Ordering information: This journal article can be ordered from
http://www.tandfonline.com/pricing/journal/RQUF20
DOI: 10.1080/14697688.2015.1114358
Access Statistics for this article
Quantitative Finance is currently edited by Michael Dempster and Jim Gatheral
More articles in Quantitative Finance from Taylor & Francis Journals
Bibliographic data for series maintained by Chris Longhurst ().