EconPapers    
Economics at your fingertips  
 

A polynomial scheme of asymptotic expansion for backward SDEs and option pricing

Masaaki Fujii

Quantitative Finance, 2016, vol. 16, issue 3, 427-445

Abstract: A new asymptotic expansion scheme for backward stochastic differential equations (BSDEs) is proposed. The perturbation parameter ‘ ’ is introduced just to scale the forward stochastic variables within a BSDE. In contrast to the standard small-diffusion asymptotic expansion method, the dynamics of variables given by the forward SDEs is treated exactly. Although it requires a special form of the quadratic covariation terms of the continuous part, it allows rather generic drift as well as jump components to exist. The resultant approximation is given by a polynomial function in terms of the unperturbed forward variables whose coefficients are uniquely specified by the solution of a recursive system of linear ordinary differential equations. Applications to the jump-extended Heston and -SABR models for European contingent claims, as well as the utility-optimization problem in the presence of a terminal liability, are discussed.

Date: 2016
References: View references in EconPapers View complete reference list from CitEc
Citations:

Downloads: (external link)
http://hdl.handle.net/10.1080/14697688.2015.1036770 (text/html)
Access to full text is restricted to subscribers.

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:taf:quantf:v:16:y:2016:i:3:p:427-445

Ordering information: This journal article can be ordered from
http://www.tandfonline.com/pricing/journal/RQUF20

DOI: 10.1080/14697688.2015.1036770

Access Statistics for this article

Quantitative Finance is currently edited by Michael Dempster and Jim Gatheral

More articles in Quantitative Finance from Taylor & Francis Journals
Bibliographic data for series maintained by Chris Longhurst ().

 
Page updated 2025-03-20
Handle: RePEc:taf:quantf:v:16:y:2016:i:3:p:427-445