EconPapers    
Economics at your fingertips  
 

Optimal hedging in an extended binomial market under transaction costs

Norman Josephy, Lucia Kimball and Victoria Steblovskaya

Quantitative Finance, 2016, vol. 16, issue 5, 763-776

Abstract: We develop an approach to optimal hedging of a contingent claim under proportional transaction costs in a discrete time financial market model which extends the binomial market model with transaction costs. Our model relaxes the binomial assumption on the stock price ratios to the case where the stock price ratio distribution has bounded support. Non-self-financing hedging strategies are studied to construct an optimal hedge for an investor who takes a short position in a European contingent claim settled by delivery. We develop the theoretical basis for our optimal hedging approach, extending results obtained in our previous work. Specifically, we derive a no-arbitrage option price interval and establish properties of the non-self-financing strategies and their residuals. Based on the theoretical foundation, we develop a computational algorithm for optimizing an investor relevant criterion over the set of admissible non-self-financing hedging strategies. We demonstrate the applicability of our approach using both simulated data and real market data.

Date: 2016
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (1)

Downloads: (external link)
http://hdl.handle.net/10.1080/14697688.2015.1039225 (text/html)
Access to full text is restricted to subscribers.

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:taf:quantf:v:16:y:2016:i:5:p:763-776

Ordering information: This journal article can be ordered from
http://www.tandfonline.com/pricing/journal/RQUF20

DOI: 10.1080/14697688.2015.1039225

Access Statistics for this article

Quantitative Finance is currently edited by Michael Dempster and Jim Gatheral

More articles in Quantitative Finance from Taylor & Francis Journals
Bibliographic data for series maintained by Chris Longhurst ().

 
Page updated 2025-03-20
Handle: RePEc:taf:quantf:v:16:y:2016:i:5:p:763-776