EconPapers    
Economics at your fingertips  
 

Predicting recovery rates using logistic quantile regression with bounded outcomes

Jhao-Siang Siao, Ruey-Ching Hwang and Chih-Kang Chu

Quantitative Finance, 2016, vol. 16, issue 5, 777-792

Abstract: Logistic quantile regression (LQR) is used for studying recovery rates. It is developed using monotone transformations. Using Moody’s Ultimate Recovery Database, we show that the recovery rates in different partitions of the estimation sample have different distributions, and thus for predicting recovery rates, an error-minimizing quantile point over each of those partitions is determined for LQR. Using an expanding rolling window approach, the empirical results confirm that LQR with the error-minimizing quantile point has better and more robust out-of-sample performance than its competing alternatives, in the sense of yielding more accurate predicted recovery rates. Thus, LQR is a useful alternative for studying recovery rates.

Date: 2016
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (10)

Downloads: (external link)
http://hdl.handle.net/10.1080/14697688.2015.1059952 (text/html)
Access to full text is restricted to subscribers.

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:taf:quantf:v:16:y:2016:i:5:p:777-792

Ordering information: This journal article can be ordered from
http://www.tandfonline.com/pricing/journal/RQUF20

DOI: 10.1080/14697688.2015.1059952

Access Statistics for this article

Quantitative Finance is currently edited by Michael Dempster and Jim Gatheral

More articles in Quantitative Finance from Taylor & Francis Journals
Bibliographic data for series maintained by Chris Longhurst ().

 
Page updated 2025-03-20
Handle: RePEc:taf:quantf:v:16:y:2016:i:5:p:777-792